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InSAR Phase Unwrapping
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Abstract—This letter presents a phase-unwrapping (PU) algo-
rithm for synthetic aperture radar interferometry based on a
grid-based filter. The proposed PU algorithm, which is based
on state-space techniques, simultaneously performs noise filtering
and PU. The formulation of this technique provides independence
from noise statistics and is not constrained by the nonlinearity
of the problem. Results obtained with synthetic data show a
significant improvement with respect to other conventional PU
algorithms in some situations.

Index Terms—Extended Kalman filter (EKF), grid filter,
particle filter, phase unwrapping (PU), synthetic aperture radar
interferometry.

I. INTRODUCTION

PHASE unwrapping (PU) is one of the key processing steps
in all applications of synthetic aperture radar (SAR) inter-

ferometry. A lot of literature concerning different techniques
to solve the PU problem has been published during the last
years. We refer to the book by Ghiglia and Pritt [1] for an
excellent overview. There are two general types of conventional
PU methods. The algorithms of the first group, which are
generally named path-following or region-growing algorithms,
isolate and/or mask problematic zones containing residues and
unwrap the interferogram by avoiding these zones. The tech-
niques of the second group provide a global solution which
minimizes a cost function over the whole interferogram. Some
of these techniques, and other alternative approaches which
do not correspond to these groups, make use of a prefiltering
stage before starting the unwrapping procedure with the filtered
phase, for instance [2]. Consequences of these strategies are the
following: phase information in noisy pixels is not recovered by
the path-following algorithms, noisy pixels distort the solution
in global approaches, thus affecting the noise-free areas, and
the information contained in noisy pixels is lost if a prefiltering
stage is carried out.

There exists another group of statistical solutions for PU.
They are known as “multichannel” techniques because they
require multiple acquisitions (not only two images) to be ap-
plied. In contrast, our approach is devised for conventional
“single-channel” interferometry, i.e., for a single interferogram
obtained with only one pair of images.
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The algorithm proposed by Ferretti et al. [3] makes use
of a set of images acquired with the same sensor, but the
interferograms generated by combining these images exhibit
different baselines. Since the influence of different error con-
tributions is a function of the baseline, this algorithm exploits
the sensitivity/insensitivity to the baseline for minimizing the
total error by properly using all the information. The algorithms
presented by Ferraiuolo et al. [4] and Fornaro et al. [5] are
designed for multifrequency systems, i.e., for the combination
of interferograms generated with images acquired at several
frequency bands. Again, the sensitivity of errors to the different
scales provided by different wavelengths is exploited statisti-
cally to derive a better global solution.

Multichannel techniques have the advantage to eliminate, or
at least mitigate, the ambiguity problem related to the wrapping
operator. However, they have the drawback to amplify the
noise contribution during the process for ambiguity reduction.
This effect is more important when the noise contribution is
large (i.e., small values of coherence γ) and the ambiguity
reduction factor d is large too (d � 1), introducing large spikes
(impulsive noise). In the particular case of the PU algorithm
proposed by Fornaro et al. [5], error propagation is a key factor.

We are interested in recovering as much information as
possible from the interferogram, including the noisy pixels.
Therefore, an ideal method would consider every pixel to be
simultaneously unwrapped and filtered.

There exists an algorithm that shares the same objective and
was already published in [6]–[10]. That algorithm combines a
slope estimator with an extended Kalman filter (EKF), showing
the mentioned feature of integrating a slope/frequency estima-
tor and an EKF in an elegant fashion to simultaneously achieve
noise reduction and PU. Unfortunately, that solution is founded
on the following two assumptions. First, both the evolution
and measurement models are available and correspond to the
linear functions. Second, the noise affecting both the evolution
and measurement stages is Gaussian. When the constraint of
Gaussian noise holds but the models are not linear functions,
the EKF has been used in many cases as a good solution that ap-
proximates the nonlinearities by local linearizations. The main
problem arises when the noise present in the interferogram is
not Gaussian. The EKF cannot guarantee a successful PU, as
we will show later with an example.

In this letter, we propose to substitute the EKF by a grid-
based filter (GbF), which is not subject to any linear or
Gaussian constraints. A detailed tutorial about different meth-
ods to broach nonlinear/non-Gaussian problems can be found
in [11]. The solution proposed in this letter combines a GbF
with a phase slope estimator to simultaneously unwrap and
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filter the interferometric phase. Although this approach could
be combined with path-following strategies to enhance their
performance with the embedded noise filtering, we present here
the algorithm without any conditioned scheme for choosing the
unwrapping path. In particular, the basic algorithm introduced
in this letter runs the interferogram row by row, passing through
zones of low coherence and containing residues, unwrapping
and filtering the phase at the same time. We refer to [1] for the
definition of coherence and residues.

This letter is organized as follows. Section II introduces the
basic formulation of the PU problem. The GbF formulation for
solving the PU is presented in Section III. Then, Section IV
illustrates the performance of the new method with an example
using a data set extracted from the book by Ghiglia and Pritt
[1]. A comparison with both the Goldstein branch-cut algorithm
[1] and the cited EKF approach is also discussed. Finally,
conclusions are drawn in Section V.

II. PU BASIC FORMULATION

By assuming a 1-D notation, for the complex coherence
between two SAR images γ, we have, in polar notation, at
pixel k

γ(k) = a(k) · exp [j · ϕ̃(k)] (1)

where a(k) is the observed interferometric coherence (between
zero and one), and ϕ̃(k) is the modulo 2π mapped interferomet-
ric phase, which is also called wrapped phase. This mapping
can be expressed by

ϕ̃(k) = �ϕ(k) + ẽϕ(k)�|2π

=ϕ(k) + ẽϕ(k) ± n · 2π ∈ (−π, π] (2)

where ϕ(k) is the true unambiguous absolute phase at pixel k,
and ẽϕ(k) is the mapped phase error at pixel k.

The final objective is to obtain the unwrapped or absolute
phase ϕ(k) from the noisy 2π mapped phases ϕ̃(k) con-
tained in the interferogram. At this step, we will be interested
in the calculus of the phase difference from one pixel to
the next

∆̃ϕ(k) = [ϕ̃(k + 1) − ϕ̃(k)]|2π (3)

that yields

∆̃ϕ(k) =
⌊
δϕ(k) + [ẽϕ(k + 1) − ẽϕ(k)]|2π

⌋
|2π

(4)

where δϕ(k) is the true discrete phase derivative, and its mod-
ulus is always supposed to be smaller than π (i.e., there is no
aliasing).

Finally, the unwrapped phase ϕ(k) can be obtained through
the recursive expression

ϕ(k + 1) = ϕ(k) + ∆̃ϕ(k). (5)

III. APPROXIMATED GBF

A. Introduction to the GbF

From now on, to be coherent with the notation of state-space
methods, the unwrapped phase at pixel k, i.e., ϕ(k), will be
referred to as the corresponding state xk at pixel k. The concept
of state, which is also known as cell, is introduced next.

The objective is to calculate estimates of the state xk

based on the set of all available observations z1:k = {zi, i =
1, . . . , k} up to pixel k. Thus, the filter tries to approximate
the posterior probability density function (pdf) p(xk|z1:k). By
considering the Markovian assumption, the pdf p(xk|z1:k) can
be obtained recursively from the pdf p(xk−1|z1:k−1) calculated
at the previous pixel k − 1. It is supposed that the initial
pdf p(x0|z0) ≡ p(x0) is known. Then, this sequential problem
is divided into two stages: prediction and update. The prediction
stage is solved by employing the evolution model, and the
update stage is solved by the observation model. It is assumed
that both models are known.

For a grid-based approximation, it is assumed that some
necessary information is available.

1) Initial weight distribution: wi
o, i = 1, . . . , Ns, where Ns

is the number of cells (see cell definition). An initial state
xo is also selected from this distribution according to any
criteria, for instance, the average value or the state whose
weight is maximum.

2) Observations: z1, . . . , zT , where zk, k = 1, . . . , T , is the
observed wrapped noisy phase at pixel k, which is for-
merly denoted as ϕ̃(k), and T is the total number of
pixels.

3) Evolution model: xk = fk(xk−1) ↔ p(xk|xk−1).
4) Observation model: zk = hk(xk) ↔ p(zk|xk).
The state space of our interferometric problem is continuous

but can be decomposed into a discrete state space; thus, this
suboptimal solution can be adopted. Specifically, the contin-
uous state space is divided into Ns cells or states {xi

k, i =
1, . . . , Ns} which correspond to all possible phase values. The
grid must be sufficiently dense to get a good approximation to
the continuous state space. It is assumed that the pdf at pixel
k − 1 can be approximated as

p(xk−1|z1:k−1) ≈
Ns∑
i=1

wi
k−1|k−1δ

(
xk−1 − xi

k−1

)
(6)

where wi
k−1|k−1 = p(xk−1 = xi

k−1|z1:k−1) is a weight that rep-

resents the conditional probability of xi
k−1 given observations

up to pixel k − 1.
Then, the prediction equation and the corresponding weight

estimation are, respectively, given by

p(xk|z1:k−1) ≈
Ns∑
i=1

wi
k|k−1δ

(
xk − xi

k

)
(7)

wi
k|k−1 ≈

Ns∑
j=1

wj
k−1|k−1p

(
x̄i

k|x̄j
k−1

)
(8)

where δ() represents the Dirac Delta.
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The subscript 1:k − 1 in the left side of (7) means that
xk depends on all observations z1, z2, . . . , zk−1. The subscript
k − 1|k − 1 in the right side of (8) indicates that the weight
is estimated at pixel k − 1, taking into account the obser-
vations up to k − 1. In contrast, wi

k|k−1, which is obtained
after the prediction stage, indicates that the weight is esti-
mated at pixel k, considering the observations up to k − 1
(8). As previously introduced, the assumption of the first-
order Markovian process allows the following simplification:
p(xk|xk−1, z1:k−1) = p(xk|xk−1). In this way, if wi

k−1|k−1 is

known, it is possible to calculate wi
k|k−1 through the evolution

model p(xk|xk−1) by using (8).
The update equation and the corresponding weight estima-

tion are given by

p(xk|z1:k) ≈
Ns∑
i=1

wi
k|kδ

(
xk − xi

k

)
(9)

wi
k|k ≈

wi
k|k−1p

(
zk|x̄i

k

)
∑Ns

j=1 wj
k|k−1p

(
zk|x̄j

k

) . (10)

In this stage, the observation at pixel k is included when de-
termining wi

k|k (10). Every weight wi
k|k is computed at the cen-

ter of the corresponding cell x̄i
k. The probabilities p(x̄i

k|x̄
j
k−1)

and p(zk|x̄i
k) are defined by the evolution and observation

models at pixel k, which are given by

x̄i
k = x̄j

k−1 + ∆ϕ̂k−1 + nk−1 (11)

zk = x̄i
k + νk (12)

where ∆ϕ̂k−1 represents a phase slope estimation, and nk and
νk are supposed to be approximate models for the noise present
in both the evolution and measurement stages, respectively.
Several techniques can be used to obtain an estimation of
the phase slope. For instance, the mode of the power spectral
density was used in [6] and [7] due to its supposed insensi-
tiveness and robustness to superimposed white noise, whereas
a matrix-pencil approach and a slope average-based method
were proposed in [12] and [13], respectively. All of them are
perfectly applicable. The first one has been selected in this case
for the sake of comparison. It is well known that the noise
present in an interferogram is Wishart. Therefore, noise νk has
been modeled as a Wishart discrete distribution. Concerning
nk, it models the uncertainty introduced by the slope estimator
(based on the power spectral density in this letter). It has been
modeled as a Gaussian discrete distribution for the sake of
comparison with [6] and [7].

If an EKF is used, instead of the GbF, a possible solution
(presented in [6]–[10]) employed two dimensions per pixel
(inphase and quadrature components of phase contained in
the InSAR image), thus increasing complexity. The update
equation was as follows:

xk = xp
k + K · (zk − xp

k) (13)

where zk is the measurement, xp
k is the unwrapped phase

obtained by the prediction equation of the EKF, K is the

Kalman gain, and xk is the unwrapped solution obtained by the
update and final equation [14]. It can be demonstrated that

|max [K · (zk − xp
k)]| = 1 rad (14)

which means that a very bad prediction xp
k provided by an

erroneous slope estimation only can be corrected up to ±1 rad
by the update equation in the best case.

In contrast, the application of a GbF solution is more straight-
forward, with the great advantage of using only one dimension
per pixel (directly the phase), bringing down the complexity to
its simplest case, and it does not show the mentioned restriction
in the update equation.
A priori, one drawback of the grid-based methods could be

the constraint of a finite state space, but this is not the case in
the interferometric PU problem. The grid-based solution that
we propose here makes use of a sliding window W s

k to cover the
complete state space. This window is 2π wide and is centered
in the previous value for the unwrapped phase given by GbFav,
which is introduced next. It is based on the assumption that
the phase difference between two contiguous pixels must be
contained in the interval (−π,+π]. In this way, this sliding
state space allows us to afford the interferometric PU prob-
lem independently of the width of the complete state space.
Computational cost increases linearly with Ns—the number
of cells.

B. Two-Dimensional PU Algorithm

To extend the use of GbF to 2-D interferograms, any predic-
tion estimate will be calculated depending on two neighbors so
that only the stage concerning the evolution model (7) needs to
be modified as follows

wi
k|k−1 ≈ 1

2
·




Ns∑
j=1

wj
k−1|k−1 · pH

(
x̄i

k|x̄j
k−1

)

+
Ns∑
j=1

wj
k−m|k−m · pV

(
x̄i

k|x̄j
k−m

)
 (15)

where wj
k−1|k−1 is the final weight distribution after the update

stage at pixel k − 1, and pH(x̄i
k|x̄

j
k−1) is the evolution model in

the horizontal direction, also at pixel k − 1, which is given by

x̄i
k = x̄j

k−1 + ∆ϕ̂H
k−1 + nH

k−1 (16)

where x̄j
k−1 refers to the unwrapped phase at pixel k − 1,

∆ϕ̂H
k−1 refers to the horizontal slope estimation at pixel

k − 1, and nH
k−1 refers to the Gaussian-noise sample at pixel

k − 1. Note that pixel k − 1 is the previously unwrapped one
that is placed in the same row and adjacent to the current
pixel k.

On the other hand, wj
k−m|k−m is the final weight distribution

after the update stage at pixel k − m, and pV(x̄i
k|x̄

j
k−m) is the
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Fig. 1. Pseudocode of the PU algorithm using a GbF.

evolution model in the vertical direction, also at pixel k − m,
which is given by

x̄i
k = x̄j

k−m + ∆ϕ̂V
k−m + rV

k−m (17)

where x̄j
k−m refers to the unwrapped phase at pixel k − m,

∆ϕ̂V
k−m refers to the vertical slope estimation at pixel

k − m, and rV
k−m refers to the Gaussian-noise sample at pixel

k − m. Note that pixel k − m is the previously unwrapped one
that is placed in the same column and adjacent to the current
pixel k.

Finally, a pseudocode of the PU algorithm is shown in Fig. 1.

IV. RESULTS

The results in this section illustrate the performance of
different PU solutions as well as the influence of the noisy
input signal. The PU solutions are the following: the branch-
cut algorithm proposed by Goldstein [1], two approaches
of the GbF proposed in this letter, and the EKF algorithm
[6]–[10]. The two GbF options consist of selecting the state
whose weight is the maximum GbFmx or selecting the average
state of the distribution GbFav. These algorithms have been
applied against one example that most of the methods intro-
duced in [1] fail to unwrap: a synthetic interferogram from a
mountainous terrain around Long’s Peak, Colorado (Fig. 2).
The data set, as detailed in [1], is generated with a high-fidelity
IFSAR simulator by employing digital terrain elevation models
from the U.S. Geological Survey. We have also chosen this
synthetic example because the true unwrapped phase is avail-
able; thus, one can compare with the phase delivered by the PU
algorithms. Although more expensive than other techniques, the
computational cost was only a few seconds to unwrap the area
shown in Fig. 2(d).

Fig. 2. (a) Coherence. (b) Residues. (c) Ideal unwrapped phase. (d) Noisy
input signal.

Fig. 3. (a) Goldstein unwrapped phase. (b) Goldstein rewrapped phase.

In the study area, there exist zones where the coherence of
data is very poor, for instance, in the surroundings of rows
3–5 and columns 25–35, reaching values lower than 0.3. As
a consequence, residues appear.

The PU algorithm proposed by Goldstein [1] identifies the
residues and defines the so-called branch cuts between them,
which will not be crossed by the unwrapping paths. Note that
this method attempts to minimize the branch-cut lengths. As
a result, many areas can be completely isolated and, conse-
quently, not be unwrapped consistently with the rest of the
interferogram. This is the case shown in Fig. 3.

As observed in Fig. 4 for the same test interferogram, both
GbF solutions, namely, GbFmx and GbFav, can deal with non-
Gaussian distributions, in this case Wishart noise, and can
recover from errors. This is possible since, as introduced before,
they do not need Gaussianity and linearity requirements to be
held. Moreover, a GbF solution is able to reach a correction of
up to ±2π rad when compared with the EKF in Fig. 5.

From the comparison of both GbF solutions, it can be con-
cluded that the GbFav case is more likely to produce smoother
profiles than the GbFmx solution. This feature can be consid-
ered as a simultaneous filtering process.

As an additional test, which is not included here due to space
constraints, we have computed the difference between the un-
wrapped results and the original interferogram. The rewrapping
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Fig. 4. (a) GbFmx unwrapped phase. (b) GbFmx rewrapped phase. (c) GbFav

unwrapped phase. (d) GbFav rewrapped phase. The continuous space contained
inside the 2π sliding window has been translated into a discrete state space
composed of N = 100 cells.

Fig. 5. (a) EKF unwrapped phase. (b) EKF rewrapped phase.

of the GbF results is a noisy constant as expected, and no bias
has appeared even for large-size images.

V. CONCLUSION

A new solution of the PU problem in SAR interferometry is
presented in this letter. This solution is based on an approximate
GbF. It has been shown that this performs better than the other
conventional methods in some situations since the GbF can deal
with zones containing residues.

Two variants of this method have been also compared against
the EKF method, which shares the same philosophy of simulta-
neously filtering and unwrapping. These algorithms have been
applied to an illustrative example extracted from [1]. It has been

shown that, whereas the EKF fails and never recovers, the grid-
based solutions perform better and are also able to recover from
errors.

Our research lines at present and in the near future are
focused on two main issues. First, utilization of other slope
estimators, for instance, the matrix-pencil approach proposed
in [12] or the slope average-based method introduced in [13].
Second, the combination of the GbF approach with path-
following techniques will be analyzed since a better perfor-
mance is expected from the synergy between both strategies.
Moreover, a complete analysis about the performance of this
algorithm in different scenarios is currently being carried out.
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