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ABSTRACT 
A new method for characreming electrically large scatteren and solring 
the scattering of multiple objects in two dimensions for TE polarization 
of the incldent field is presented. Large objects are dicided into smaller 
ones. The method of moments and spectral techniques are used to 
compute a transference mahir for each single subscatferer, which relates 
the incident and scattered jie1d.x Then, with the use of an iteratir,e 
method for soliing the interaction between all of them, the response for 
the whole system is obtained. This procedure is more efficient rhan the 
method of moments when applied to the scatterer considered as a single 
element. 0 1996 John Wilqv & Sons, Inc. 

1. INTRODUCTION 

Up to now, electrically large objects have been studied with 
the use of costly high-frequency techniques like physical 
optics and GTD, because other numerical techniques like the 
method of moments are inefficient for such problems. An 
alternative procedure to solve such problems is presented in 
this article. First of all. the scatterers are divided into smaller 
subobjects, which are easily studied by means of the well- 
known method of moments [l], which is quite accurate and 
efficient for electrically small scatterers. Each subobject is 
represented by a transference matrix that relates the spectra 
of the incident and scattered fields, making the problem 
independent of the geometry of each individual subobject. 
Finally, an iterative method, described in [2], is used here in 
order to find the field scattered by the whole object when an 
arbitrary incidence with TE polarization is present. 

A two-dimensional TE field in isotropic media has no z 
component of E and only has a z component of H. There- 
fore, it is convenient to use the magnetic field for TE cases 
bccause the solutions of the electromagnetic problems are 
reduced to the ones of scalar problems. 

2. TRANSFERENCE MATRIX OF A SINGLE SCAlTERER 
Metallic objects with no z dependence are treated. Such 
objects can be enclosed by an imaginary cylinder, and the 

incident field to this cylinder and the scattered field by the 
object can be expressed in terms of a series of cylindrical 
modes or spectral components: 

Nl 

H i  = i,Jp(kp)ejP9, (1) 

H i  = c q H f ) ( k p ) e J q 9 ,  (2) 

p =  -NI 

ND 

q =  - ND 

where p and 4 are defined according to an internal point of 
this cylinder, as shown in Figure 1. 

The i, and cq coefficients form two column vectors, 1 and 
- C, namely, the spectra of the incident and scattered fields, 
respectively. The purpose of our method is to find a matrix 
that which relates these spectra by means of a single matrix 
product, 

where the d,, element of _D means the weight of the qth 
spectral scattered component due to the pth spectral incident 
component. 

The process to compute this matrix is completed by the 
following four steps: 

1. Suppose the incident field is only one of the cylindrical 
modes Jp(kp)ejP9. 

2. Find the surface current density J excited on the object 
by such an incident field. 

3. Express the scattered field produced by this current 
distribution as a series of emergent cylindrical modes. 
The coefficients of that series will be the pth column of 
the matrix. 

4. Repeat Steps 1-3, running p from -NI to N,- 

In order to find the surface current density J ,  the method 
of moments [l] is used. This numerical technique consists of 
writing the magnetic field integral equation (MFIE) particu- 

Figure 1 
cylinder 

Coordinate system. Arbitrary-shaped object enclosed by a 
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larized on the conductor surface. The MFIE relates the 
tangential components of the incident and scattered fields, 
H: and Hi. It can be expressed through the equation 

J = 6 X Hi + 6 X H', with HS = f(J).  (4) 

The method of moments reduces this integral equation to a 
set of algebraic equations solved like a matrix system. 

The total magnetic field at any point is H, = H: + Hf, Hf 
being the magnetic field produced by J on the object surface. 
They are related in the TE case by 

where dl' designates the reference direction of J, and G is 
the two-dimensional Green's function given by 

A section of the object surface is shown in Figure 2. The field 
H, is finite external to C, zero internal to C,  and the 
discontinuity equals the current density. 

If we take into account the problems that such a disconti- 
nuity arises and use the formulation of the method of mo- 
ments, it is possible to express 

H: + i . V  X 1 JGdl' , (7) 
C IC ,  

which is the equation for the unknown J .  C, denotes an 
evaluation of the magnetic field just external to C. Moreover, 
if the scatterer is a conducting sheet of infinitesimal thick- 
ness, it should be treated as the limit of one of finite thick- 
ness. If the point-matching approximation of the method of 
moments is used, the matrix system to solve is expressed by 

where 

dl 

and a, are the coefficients employed to develop the un- 
known J in terms of a series J = C a,fn. f, are the basis 
functions of the method, ( x , ,  y,) are the coordinates of the 
central point at each segment AC,, (current units) of the 
basic contour, am, is the Kronecker delta, and H f ( m , n )  
denotes H," at ( x m , y m )  on C, due to a unit current density 
on AC,, at ( x n , y n ) .  A typical current unit is depicted in 
Figure 3. 

The final expressions of the I,, elements of the j matrix, 
according to [l], are 

I,, = i, m = n ,  (11) 

1 
4 fmn = -k  AC,,(n. R)H,'2)(kl p,,, - p,,]), m # n, (12) 

where n is the unit normal to the element of current and 

The final solution for J is well known and is given by 
J = f * _I-' * g, where f denotes a vector of basis functions 

Once the surface current density is found, the magnetic 
field due to the nth element of current (see Figure 4) created 
by the contour segmentation can be obtained with the use of 

- 
f n .  

where f n  = J ( n ) A C ,  is the nth element of current and R is 
expressed as 

(15) 

If there are N elements of current, the total field is the 
summation of all the contributions due to each one: 

Jl=ACn 
Figure 2 Section of the object surface Figure 3 Element of current JI and local coordinates 
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Y f  

Figure 4 Element of current I 

Finally, the series of emergent cylindrical modes can be 
obtained with the use of the discrete Fourier transform: 

wherc 9 is defined as 

and H; has been computed in 2N,  points of the cylinder of 
radius a that enclosed the object. 

3. INTERACTION BETWEEN THE SCAITERERS 
Once the individual scattering transference matrix of each 
object has been obtained, the iterative method described in 
[2] is used to analyze the scattering of all the objects. In this 
method, the objects are grouped progressively in sets of 
scatterers, and the interaction between all the sets is studied, 
giving place to combined transference matrices for all the 
objects, which take into account the presence of the rest of 
scatterers. 

For each iteration two groups are considered, and the 
general formulation is summarized in the following expres- 
sions: 

(19) 

(20) 

+r,,,,*EZ+E, , i = 1 , 2  ). . . ,  M,, (22) i ~- - 

where MI and M ,  are the number of objects of the first and 
second group, respectively, the subindexes ml and m 2  refer 
to the mean points of each group (Cm, and Cm2), the subindex 
0 refers to the mean point of all first and second group 
objects (C,,), and D1(1),(2) is the combined transference matrix 
for the ith objectTf the first (1) or second (2) group, taking 
into account the presence of the other objects of its own 
group. The _T matrices are transformation matrices, as ex- 
plained in [3, 41. 

4. RESULTS 
4.1. Computational Complaiy. The computational complex- 
ity of this method can be obtained as in [S-81, but our 
interest consists of showing the great power of the algorithm 
in order to solve scattering problems that minimize the 
computation time. 

The method has been applied to  solve the scattering 
produced by a 4A length metallic strip. This strip has been 
divided into N substrips of the same length, and N varies 
from 1 to 40. When N grows the needed time for finding the 
transference matrix of each individual strip with the use of 
the method of moments falls, because they are smaller strips. 
Only one transference matrix must be computed, because all 
of the strips have exactly the same length, and this matrix can 
be used for all of them. Moreover, when N grows the 
interaction algorithm is what uses the most CPU time. 

However, the complexity of the method of moments is 
O(n3)  [5]  (n being the number of unknowns, which is related 
to the size of the scatterers), whereas the interaction algo- 
rithm has a complexity approximately linear with the number 
of scatterers. Then we can find a number of scatterers N that 
will use minimal computation time. 

This process' is depicted in Figure 5. We can see that for 
N < 10. that is, strip lengths greater than 0.4A, the total CPU 

Individual matrices 
Interact. algorithm 

lo[ I 4 

10 20 30 40 
N (number of subobjects) 

Figure 5 Comparison in terms of CPU time for a 4h strip 

'The  simulation was performed on a PC with a 486DX4 processor. a 
100-MHr clock, and 8 MB RAM, with the GNU C + +  compiler 
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Figure 6 Phase of the scattered field by a 4A strip obtained with 15 
subelements 

time is mainly dominated by the computation of the individ- 
ual transference matrices with the method of moments. On 
the other hand, if there are more than 20 objects, the 
interaction algorithm becomes important in terms of the 
CPU time. Therefore, if we select 10 < N < 20, the mini- 
mum is reached. 

4.2. Numerical Simulations. First of all, the results for the 4A 
strip used in the former section have been computed with 
N = 15. The phase of the scattered field is shown in Figure 6 
when thcre is a plane wave incident toward 4 = - 60". There 
are two plane waves in the scattered field traveling toward 
4 = 60" (specular direction) and 4 = -60" (shadow direc- 

c 

- - - - Aperture Dist. Method 
B 0 : ' .  " ' ' ' " I '  ' " ' ,  

" " " ' I  ' " ' ' I " 'f - 
9 1- Spectral Method ur 
U 

c - B Q  
9 ur 
0 -10 
U 

w 
U 

8 -20 

B 

w 
I- 

w -30 n 
i 

-1 0 0 10 20 
$ 4  -20 

Figure 8 Comparison between this method and the aperture distri- 
bution method for the scattered field by a parabolic reflector (f = 
ZOA, D = 15A) with an omnidirectional source at focus 

of the aperture distribution method (with ray tracing) [9, pp. 
611-6171 to a parabolic reflector has been undertaken. The 
parabolic reflector has f =  20A and D = 15A, and in our 
method it has been subdivided into N = 30 strips. Both 
scattered fields are shown in Figure 8. The spectra1 method 
presented in this article is more exact than the aperture 
distribution method, although the reflector is a sequence of 
strips. 

Finally, because the capability of this method for large 
objects has been proven, an offset Cassegrain multireflector 
is analyzed. The offset parabolic main reflector is divided into 
N = 30 strips, and the hyperbolic subreflector into N = 6 
strips, all with lengths of approximately A/2. It is a clear 
example of great objects in terms of the wavelength. The 
subreflector is illuminated by a directional cylindrical source. 

In Figure 9 the phase of the total field is presented. The 
plane wave outgoing from the parabolic reflector and an 
interference pattern in the area between both reflectors can 

tion). The amplitude in the far-field region is depicted in 
Figure 7, and is the maximum radiation in the specular 

In order to assess the validity of this method a comparison 
with the scattered field obtained by means of the application 

PHASE OF THE TOTAL FIELD 
direction. 22.5 

17.5 

A 

0 % 
9 

12.5 w 
a -10 - 
w x 

> U 
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E a 7.5 
g -20 
w 
I 
I- 
U 
0 2.5 
w -30 
0 
3 
t 
2 

:40 -2.5 
0 45 90 135 180 -20 -15 -10 -5 0 5 

9 (Degrees) x (1) 

Figure 7 Amplitude of the scattered field by a 4A strip obtained 
with 15 subelements flector 

Figure 9 Phase of the total field for an offset Cassegrain multire- 
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Figure 10 Amplitude of the total field for an offset Cassegrain 
muitireHector 

be observed. On the other hand. the amplitude of the total 
field for -20“ < 4 < 20” (centered in the aperture of the 
reflector) is shown in Figure 10. The first side-lobe level has 
been reduced with regard to the case of a parabolic reflector 
case, in spite of the offset ideal behavior, because some 
blockage remains. In fact. the maximum radiation is shifted a 
bit because of the overflow of the source field on the side of 
the hypcrbolic subrefcctor. This problem has been easily 
studied with this method, in contrast to the ray theory usually 
u x d  when analyzing reflcctors problems. 

5. CONCLUSIONS 
A very new and efficient method for characterizing electri- 
cally large two-dimensional scatterers under T E  incidence is 
presented. Large objects are divided into smaller ones. The 
complexity of this method is compared with the method of 
moments, and an optimum number of subdivisions for the 
scatterer is found in terms of the computation time. 

Numcrical results with the use of a strip, a parabolic 
reflector, and a Cassegrain multireflector system have been 
presented, showing the huge possibilitics of this method. 
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ABSTRACT 
Kecipracol uniaxial hianLwtropic media are generalizations of the well- 
studied chiral materials. Based on the concept of characteristic wu11es 
and the mrrhod of angular spectral eqansion, j k l d  rc.pre.sentations in 
his class 01 media are deidoped in wnns ofthe cy/inclric.a/ ~‘ecfor W U I Y  

fiinctions. An additional theorem of ivctor wurv Jitrictions for reciprocul 
hianisotropic medium can be dericvd from that / o r  isotropic incdiu. 
Application of the present furmu1ation.s in .scattering is presented to show 
how tn use these forniulutions in a practical way. (i3 1996 John Wiley & 
Sons. Inc. 

I. INTRODUCTION 
With recent advances in polymer synthesis techniques, in- 
creasing attention has been attracted to  the analysis of inter- 
actions between electromagnetic waves and complex media. 
Among those novel microwave materials, reciprocal chiral 
media were intensively studied in the last decade. They 
proved to be useful to construct antireflection coatings, recip- 
rocal microwave components, and antenna radomes. In [l], a 
concept of omega media with &shaped metal elements em- 
bedded in a dielectric host medium was introduced to ensure 
the first-order effects o n  the propagation factor in a partially 
filled rectangular waveguide. These materials can find novel 
applications in designing reciprocal phase shifters, directional 
couplers, and scanning antennas [2] .  A uniaxial modification 
of such an omega composite was proposed in [3], where the 
uniaxial symmetry and the additional interaction between 
orthogonal electric and magnetic fields make these materials 
potentially useful for antireflection shields and antenna 
radomes. Some other special cases of uniaxial materials were 
considered in [4-61. Particularly, plane waves propagating in 
these uniaxial media were investigated. Recently, a reciprocal 
uniaxial bianisotropic medium was suggested to model the 
above-described uniaxial materials. and a vector transmis- 
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